Massive mode polarization entangled two-photon frequency comb

  • Gisinm, N. & Thew, R. Quantum communication. Nat. Photonics 1165 (2007).

    Article on Google Scholar Ads

  • Ying, J. et al. Distribution of entanglement by satellite over 1200 kilometers. Science 3561140 (2017).

    CAS PubMed Google Scholar Article

  • Kok, P. et al. Journal article: Linear optical quantum computing. Rev. Mod. Phys. 79135 (2005).

    Announcements CAS article Google Scholar

  • Lukens, JM & Lougovski, P. Frequency-encoded photonic qubits for scalable quantum information processing. Optical 48 (2017).

    Article on Google Scholar Ads

  • Giovannetti, V., Lloyd, S. & MacCone, L. Advances in quantum metrology. Nat. Photonics 5222 (2011).

    ADS CAS Article Google Scholar

  • Kobayashi, T. et al. Hong-Ou-Mandel interference in the frequency domain. Nat. Photonics ten441 (2016).

    ADS CAS Article Google Scholar

  • Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546622 (2017).

    ADS CAS PubMed Google Scholar Article

  • Caspani, L. et al. Multi-frequency sources of on-chip quantum correlated photon pairs: a path to integrated quantum frequency combs. Nanophotonics 5351 (2016).

    Google Scholar article

  • Kues, M. et al. Quantum optical microcombs. Nat. Photonics 13170 (2019).

    ADS CAS Article Google Scholar

  • Imani, P. et al. 50 GHz spaced comb of high frequency entangled photons from an on-chip silicon nitride microresonator. Opt. Express 261825 (2018).

    ADS CAS PubMed Google Scholar Article

  • Ikuta, R. et al. 1000-mode frequency multiplexed photon pairs from a quadratic nonlinear optical waveguide resonator with a single resonance configuration. Phys. Rev. Lett. 123193603 (2019).

    ADS CAS PubMed Google Scholar Article

  • Maltese, G. et al. Generation and symmetry control of quantum frequency combs. npj Quantum Inf. 613 (2020).

    Article on Google Scholar Ads

  • Lu, HH et al. Electro-optical frequency beam splitters and tritters for high-fidelity photonic quantum information processing. Phys. Rev. Lett. 12030502 (2018).

    ADS CAS Article Google Scholar

  • Lu, H.-H. et al. A NOT controlled gate for binary frequency qubits. npj Quantum Inf. 524 (2019).

    Article on Google Scholar Ads

  • Remer, C. et al. One-way high-dimensional quantum processing implemented on d-level cluster states. Nat. Phys. 15148 (2019).

    CAS Google Scholar Article

  • Ikuta, R., Kobayashi, T., Yamazaki, T., Imoto, N. & Yamamoto, T. Cavity-enhanced broadband Rabi photonic oscillation. Phys. Rev. HAS 1031 (2021).

    Google Scholar article

  • Remer, C. et al. Built-in frequency comb source of advertised single photons. Opt. Express 226535 (2014).

    ADS PubMed Google Scholar Article

  • Remer, C. et al. Generation of entangled multi-photon quantum states using integrated frequency combs. Science 3511176 (2016).

    ADS CAS PubMed Google Scholar Article

  • Fujiwara, M., Wakabayashi, R., Sasaki, M. & Takeoka, M. Generation of entangled photon pairs by dual-port multiplexed and pumped wavelength division using a Si ring resonator. Opt. Express 253445 (2017).

    ADS CAS PubMed Google Scholar Article

  • Forsch, M. et al. A versatile source of single photons for quantum information processing. Nat. Common. 46 (2013).

    CAS Google Scholar Article

  • Guo, X. et al. Source of parametric downconverted photon pairs on a nanophotonic chip. Light Sci. Appl. 6e16249 (2017).

    CAS PubMed PubMed Central Google Scholar Article

  • Caspani, L. et al. Integrated sources of photon quantum states based on nonlinear optics. Light Sci. Appl. 6e17100 (2017).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • Pomarico, E. et al. OPO source based on a waveguide of entangled photon pairs. NJ Phys. 11113042 (2009).

    CAS Google Scholar Article

  • Pomarico, E., Sanguinetti, B., Osorio, CI, Herrmann, H. & Thew, RT Engineering integrated narrow band pure photon sources. NJ Phys. 14033008 (2012).

    Google Scholar article

  • Xie, Z. et al. Exploitation of high-dimensional hyperentanglement through a two-photon frequency comb. Nat. Photonics 9536 (2015).

    ADS CAS Article Google Scholar

  • Chang, North Carolina et al. 648 Dimensionality of Hilbert space in a two-photon frequency comb: formation entanglement and decomposition in Schmidt mode. npj Quantum Inf. seven48 (2021).

    Article on Google Scholar Ads

  • Deng, F.-G., Ren, B.-C. & Li, X.-H. Quantum hyperentanglement and its applications in quantum information processing. Science. Bull. 6246 (2017).

    Google Scholar article

  • Kwiat, PG & Weinfurter, H. Integrated Bell State Analysis. Phys. Rev. HAS 58R2623 (1998).

    ADS MathSciNet CAS Google Scholar Article

  • Barreiro, JT, Wei, T.-C. & Kwiat, PG Exceeding the channel capacity limit for linear superdense photonic coding. Nat. Phys. 4282 (2008).

    CAS Google Scholar Article

  • Sheng, Y.-B. & Deng, F.-G. Deterministic purification of entanglement and comprehensive analysis of the nonlocal Bell state with hyperentanglement. Phys. Rev. HAS 81032307 (2010).

    Announcements CAS article Google Scholar

  • Lim, HC, Yoshizawa, A., Tsuchida, H., and Kikuchi, K. Wavelength-multiplexed entanglement distribution. Opt. Fiber technology. 16225 (2010).

    ADS CAS Article Google Scholar

  • Wengerowsky, S., Joshi, SK, Steinlechner, F., Hübel, H. & Ursin, R. An entanglement-based wavelength multiplexed quantum communication network. Nature 564225 (2018).

    ADS CAS PubMed Google Scholar Article

  • Joshi, Sask. et al. A trusted metropolitan nodeless quantum communication network for eight users. Science. Adv. https://doi.org/10.1126/sciadv.aba0959 (2020).

    PubMed Article PubMed Central Google Scholar

  • Lingaraju, NB et al. Adaptive bandwidth management for entanglement distribution in quantum networks. Optical 8329 (2021).

    Article on Google Scholar Ads

  • Appas, F. et al. Flexible entanglement distribution network with an AlGaAs chip for secure communications. npj Quantum Inf. seven1 (2021).

    Article on Google Scholar Ads

  • Alshowkan, M. et al. Reconfigurable quantum local area network over deployed fiber. Quantum PRX 2040304 (2021).

    Article on Google Scholar Ads

  • Shi, B.-S. & Tomita, A. Generation of a pulse-polarized entangled photon pair using a Sagnac interferometer. Phys. Rev. HAS 69013803 (2004).

    Announcements CAS article Google Scholar

  • Kim, T., Fiorentino, M. & Wong, FNC Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer. Phys. Rev. HAS 73012316 (2006).

    Announcements CAS article Google Scholar

  • Miki, S., Yabuno, M., Yamashita, T. & Terai, H. Stable and efficient operation of a fiber-coupled superconducting nanowire avalanche photon detector. Opt. Express 256796 (2017).

    ADS PubMed Google Scholar Article

  • Christ, A., Laiho, K., Eckstein, A., Cassemiro, KN & Silberhorn, C. Probing multimode compression with correlation functions. NJ Phys. 13033027 (2011).

    MATH Google Scholar Article

  • James, DFV, Kwiat, PG, Munro, WJ & White, AG Qubit measurement. Phys. Rev. HAS 64052312 (2001).

    Announcements CAS article Google Scholar

  • Kotlyar, MV, Iadanza, S. & O’Faolain, L. Fabry–Perot lithium niobate microcavity based on band-loaded waveguides. Photon. Nanostructure. Fund. Appl. 43100886 (2021).

    Google Scholar article

  • Elshaari, AW, Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photonics 14285 (2020).

    ADS CAS Article Google Scholar

  • Comments are closed.